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‘ Abstract
~/ . .
A knowledge base system combines data management and reasoning capabilities.
It can be used to store and manipulate a body of knowledge which consists of a
set of rules and facts. The rules and facts in a knowledge base capture syntactic
information. In contrast, integrity constraints contribute semantic information about
the represented knowledge. They impose restrictions on the states of the world that
a knowledge base can model. Typically, integrity constraints are used to update and
maintain the knowledge base, but they can also be a powerful tool for answering
queries.

A logic programming system augmented with constraint processing, data storage,
and data manipulation capabilities forms the basis for a knowledge base system. Both
a runtime approach and a compiled approach to using inegrity constraints in logic
programming systems to identify and eliminate unproductive search activity have
been implemented within an existing parallel logic programming system, PRISM.
We have thus extended PRISM to be a testbed for knowledge base applications. The

extended system provides the basis for a series of experiments which 1) compare -

the performance of the compiled approach and the runtime approach, 2) demon-
strate that significant classes of knowledge representation domains can use integrity
constraints effectively, and 3) reveal additional techniques necessary to put the the-
oretical approaches into practice. We show that using constraints to process a query
can reduce search space and response time. Furthermore, we show that the compiled

approach reduces response time much more than the runtime approach. l<r )(_1_.
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1 Introduction

A knowledge base system combines data management and reasoning capabilities. It can be used to
store and manipulate a body of knowledge which consists of a set of rules and facts. Tools exist to
build such systems: a database system stores and manipulates sets of facts; a logic programming
system has deductive capability — given a a query and a set of rules, possibly containing function
symbols, and facts, it provides an answer. Additional knowledge base services, which can be
implemented as metaprograms in logic program sytems, include the ability to explain answers, to
update the rules and facts, to perform query optimization, and to ensure the security of sensitive
information.

The rules and facts in a knowlege base capture syntactic information. In contrast, integrity
constraints contribute semantic information about the represented knowledge. They impose restric-
tions on the states of the world that a knowledge base can model. Typically, integrity constraints
are used to update and maintain the knowledge base, but they can also be a powerful tool for
answering queries. Although they add no deductive knowledge — all answers deducible with the
use of integrity constraints can be deduced without the use of integrity constraints ~ they provide
information about the facts and rules that can be used to control the deductive process.

Specifically, integrity constraints allow the description of impossible states, necessary states,
and dependencies between knowledge base predicates. For example, a knowledge base concerning
genealogy might have an associated integrity constraint which says that no one can be both the
father and the mother of somebody. If the knowledge base satisfies this constraint, then a query
asking who is both a mother and a father will certainly fail. A query answering process which
considers constraint information while seeking an answer to the query could answer the query with
a partial deductive search - in some cases with no search.

A logic programming system augmented with constraint processing, data storage, and data
manipulation capabilities forms the basis for a knowledge base system. [7] and (2] provide formal
frameworks for using integrity constraints in logic programming systems to identify and eliminate
unproductive search activity. A runtime approach [9] involves processing a query simultaneously
on separate processors, a deductive processor and a constraint processor. The deductive processor
searches for an answer in a traditional manner while the constraint processor checks to see if any
intermediate state of the deduction violates a constraint or is subject to a constraint. A compiled
approach [1] transforms the rules to incorporate the constraints into the rule bodies. As the
transformed rules are used in a deductive process, checks can be performed on the bindings of
variables to ensure that they will not lead to impossible or disallowed states.

Existing logic programming systems generally do not handle integrity constraint information
during the problem solving portion of responding to a query. For example, consider a constraint
of the form «~ L;...L, where each L; is a literal and the conjunction of literals is an impossible
state. Prolog would take such a constraint and process it as a query without gaining productivity
from the activity. However, as shown in [7], (1}, and [11] integrity constraints can be used in query
processing by treating them as special formulas distinct from queries. As observed in [5], this
treatment extends to knowledge base systems.




To evaluate how useful constraints can be in practice, we have implemented the compiled and
the runtime constraint handling approaches within the parallel logic programming system, PRISM
[6]. We have thus extended PRISM to be a testbed for knowledge base applications. The extended
system provides the basis for a series of experiments which 1) compare the performance of the
compiled approach and the runtime approach, 2) demonstrate that significant classes of knowledge
representation domains can use integrity constraints effectively, and 3) reveal additional techniques
necessary to put the theoretical approaches into practice.

This paper describes our system for utilizing constraints, shows how to use constraints effectively
in three classes of knowledge domains, and evaluates the relative performance of the two constraint
handling methods. Section 2 formally defines integrity constraints and describes the compiled and
runtime approaches to optimizing query processing. Section 3 provides a description of PRISM and
describes how a separate parallel processor handles integrity constraints for PRISM in the runtime
approach. Section 4 characterizes knowledge domains in which constraints are particularly useful
and evaluates the two approaches using the results obtained by running example programs. The
final sections identify future work and summarize our findings. Some familiarity with Prolog or
another Horn clause programming language will help the reader in understanding this paper.

2 Integrity Constraints

Both the runtime approach and the compiled approach to handling integrity constraints are based
on two techniques called partial subsumption and variable substitution. In this section, we define
integrity constraints and the techniques, and describe each constraint handling approach. This
information will be used in Section 3 to describe the implementation of the runtime approach and
in Section 4 to describe the experiments which were performed to evaluate the two approaches.

2.1 Definitions

A knowledge base system has two components which are the knowledge base itself and a set of
metaprograms which manipulate the information in the knowledge base: KBS=<K,MP>.

A knowledge base has two components, the theory TH, and the set of integrity constraints IC:
K=<TH,IC>. We consider TH to consist of two distinct sets of clauses, the intensional database
and the extensional database: TH=<IDB,EDB>.

The intensional database (IDB) is a set of clauses of the form A — B,,...,B,. where A and
each B; is an atom. A is called the head of the clause, and .,. .., B, is called the body. All the
variables in a clause are assumed to be universally quantified.

The eztensional database (EDB) is a set of clauses of the form A —. EDB clauses are also called
facts, and IDB clauses are also called rules.

The theory component of a knowledge base, <IDB,EDB>, can also be considered a logic pro-




gram.

A query is a clause of the form — B,,..., By,. Answers to a query are obtained by expand‘ng the
query using resolution to produce a search tree. Each node of the search tree contains a conjunction
of atoms that is called a goal. The goal in the root node is the conjunction of atoms in the query,
and the goal in each node of the tree is a subgoal of the goal in the root node.

The integrity constraints considered in this paper are a set (IC) of clauses of the form
~Ciy...,CnyEry..., Em, where each C; is an atom whose predicate appears in a fact or the head
of a rule in the logic program, and each E; is an atom with the evaluable predicate EQ, NEQ, LESS,
or LEQ. (These evaluable predicates stand for the binary predicates =, # <, and <, with their
usual interpretations.) Each constraint may be read as “C, and...and C, and E, and...and E,
can not occur”.

Assuming that the theory of a knowledge base is consistent with its integrity constraints, the
integrity constraints can be used to process queries by incorporating the constraints into the IDB
rules to produce a semantically equivalent theory. Queries given to the new theory have the same
set of answers as if they were given to the original theory. A method called partial subsumption
to achieve this transformation was developed by [1]. Partial subsumption is the basis for both
the compiled approach anu the runtime approach to handling integrity constraints. Section 2.2
describes partial subsumption, and Sections 2.3 and 2.4 describe the two approaches.

2.2 Partial Subsumption

Partial Subsumption is a procedure that determines if an integrity constraint is relevant to a
conjunction of literals. Let I be a constraint, and let F' be a conjunction of literals.

An integrity constraint, « Cj,...,C,, partially subsumes a conjunction of literals, By, B3,..., Bm,
if and only if there exists a non-empty subset S of {C},...,C,} and a substitution 8 such that S8 C
{B1,...,Bm}. If Ci,,...,C;, are the literals in the constraint that are not in S, then the clause
(e~ Ci,0,...,Ci,0) is called a partial constraint.

If I partially subsumes F and the resulting partial constraint is empty or can be evaluated
to false — i.e. all the literals in the body of the partial constraint evaluate to true — then F
represents a disallowed state that violates the integrity constraint. For example, suppose that
dinosaur(“fred”) is a (trivial) conjunction of literals representing a state where fred is a dinosaur,
and suppose that «~ dinosaur(y) is an integrity constraint that says “there are no dinosaurs”.
The constraint partially subsumes the conjunction with the substitution {y/“f-2d”} and leaves
an empty partial constraint; this tells us that Fred can not be a dinosaur. If the constraint were
«~ dinosaur(y),y = “fred”, meaning that fred is not a dinosaur, then the constraint would partially
subsume the conjunction dinosaur(“fred”) leaving the partial constraint («— “fred” = “fred").
The partial constraint evaluates to false; therefore, fred can not be a dinosaur.

If a partial constraint that does not evaluate to false is left after partial subsumption, then
adding the partial constraint to the original conjunction of literals produces a new semantically




equivalent conjunction of literals. The new conjunction of literals is said to be the product of
merging the original constraint with the original conjunction of literals.

An integrity constraint might contain constants or multiple occurrances of a variable that pre-
vent it from partially subsuming a conjunction of literals. In this case, the constraint can be
rewritten into an equivalent variable substituted form that will do so [1] Each occurrance of a con-
stant is replaced by a unique variable and an equality literal is added to the comstraint which
equates the new variable and the constant. Similarly, for each duplicate occurrence of a variable,
the variable is replaced with a unique variable and an equality literal is added to equate the new
variable with the old variable. The variable substitution algorithm appears in Appendix ??.

For example, the constraint « dinosaur(“fred”) can be rewritten as — dinosaur(z),z = “fred”.
This variable substituted form would partially subsume the conjunction of literals dinosaur(y),
leaving the partial constraint (— y = “fred”) which does not evaluate to false but rather restricts
y from ever taking the value “fred”. The partial constraint would be added to the original conjunc-
tion by attachment, producing the new semantically equivalent conjunction dinosaur(y),y # “fred”.

2.3 Compiling Constraints

In the compiled approach to handling integrity constraints, a set of constraints is combined with
the bodies of the rules in a knowledge base’s theory to produce a semantically equivalent theory.
The new theory is said to be semantically compiled.

Prior to semantically compiling a knowledge base theory, the IDB rules must be flattened
into a new set of IDB rules whose bodies contain only extensional or recursive predicates. This
intermediate transformation eliminates the need for deduction on non-recursive predicates in the
query answering process. If the integrity constraints are defined in terms of intensional predicates,
they must also be flattened. Flattening is performed according to the method defined in [15]. This
method can be used on a program with direct recursion by flattening the non-recursive predicates
in the recursive rules before merging the rules with the constraints.

Each flattened rule of the form A «~ B,..., B, in the new set of rules is merged with the set
of integrity constraints to produce a new semantically constrained rule of the form
A «~ By,...,Bn, PCy,...,PCi where PC,,..., PCj are the partial constraints. Merging may show
that a flattened rule violates an integrity constraint. Such a rule represents a useless interaction
among the rules in the unflattened program and can be discarded. Otherwise, if a flattened rule
does not violate any of the constraints, then the new rule is added to the set of semantically
constrained rules.

A semantic compiler for a set of IDB rules and EDB facts has been implemented as a meta-level
program in Prolog {11]. The semantic compiler produces a set of rules that contains all relevant
constraint information but may still need additional code transformations in order to be executable.
In addition, partial constraints may be disjunctions of literals; thus, unfolding may be required to
ensure that rules have the correct form. The compiler was used to prepare the semantically compiled
programs for the experiments.




2.4 Checking Constraints at Runtime

The runtime approach also uses the principle of partial subsumption but does so during query
execution. As a query is processed by deduction, each node in the resulting search tree is checked
for a violation of the set of integrity constraints. Query processing and constraint processing are
treated as separate tasks that can be undertaken by different processors.

Consider a system that comsists of a deductive processor and a constraint processor. The
deductive processor sends nodes of a search tree to the constraint processor, and the constraint
processor uses partial subsumption to detect violationsin a node. The deductive processor is able to
use the violation information from the constraint processor to trim the search tree below the culpable
node. This is a simplified description of the way the runtime approach has been implemented in
the context of PRISM. A processor called a constraint machine has been developed which performs
constraint checking, creation of partial constraints, storage of nodes with partial constraints, and
message passing. Section 3 describes the implementation of this runtime approach.

3 Constraint Handling in PRISM

In order to evaluate the practicality and utility of the runtime and compiled approaches to constraint
handling, we incorporated each approach into an existing logic programming system, PRISM.
PRISM was designed as a testbed for experimenting with alternative processor functionalities for
logic programming on loosely coupled MIMD architectures. Thus, PRISM can handle deduction
over the theory, or TH, component of a knowledge base system. When augmented with constraint
handling capability, PRISM can also handle the IC component and becomes a testbed for knowledge
base applications. A description of PRISM is given in [6].

The PRISM system executes logic programs by delegating portions of a query’s implicit AND/OR
tree to different processors — a dynamically configured set of problem solving machines (PSMs)
which communicate by passing messages. A PSM is initialized with a conjunctive goal. Two al-
ternative procedures may be used to expand this or any subsequent goal in the proof tree: either
splitting a goal into its conjunctive components, or selecting a literal from a goal and unifying
it with the heads of the procedures in the logic program. Goal expansion may result in a proof
tree with multiple active branches; the problem solver may elect to distribute all but one of the
active branches to alternative problem solving machines. This simulataneous expansion of multiple
branches in the proof tree improves the query execution time for many applications. Although the
system can exploit parallelism transparently, the user has the option of annotating programs to
explicitly control execution. (4, 8, 6] provide more information on PRISM.

Incorporating the compiled constraint handling method into PRISM required adding a prelimi-
nary compilation phase to merge integrity constraints with the rules of logic programs. In contrast,
to incorporate the runtime method, a new type of machine was developed which manages constraint
information internally and communicates with the other PRISM machines. Figure 1 illustrates how
the constraint machine fits into the PRISM architecture.
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Figure 1: The Constraint Machine within PRISM




3.1 The Constraint Machine

The constraint machine (CM) monitors nodes in the proof tree built during query evaluation to
detect whether some branch of the tree involves a conjunction of literals that violates any of the
integrity constraints. A CM runs asynchronously with the other processes and communicates with
PSMs through messages. Two kinds of messages are passed between a CM and a PSM: CHECK-
CONSTRAINTS messages from a PSM to a CM, and VIOLATION messages from a CM to a PSM.
To check for constraint violations, the CM uses partial subsumption to maintain its own version of
the proof tree as it participates in ongoing communication with the PSMs.

3.1.1 Maintaining Constraint Information

The Constraint Machine’s version of the proof tree for a query tree carries the information necessary
to check constraints dynamically as the query is being solved. Although the structure of the CM’s
proof tree is the same as the structure of the PSM’s proof tree, the contents of the nodes differ.
While each PSM node contains a subgoal in the proof, each CM node contains the partial constraints
that the corresponding PSM subgoal and its descendents must not violate. As the PSM generates
each new node in its tree, it sends information about the new node to the CM so that the CM may
build its corresponding node. We call the two trees the constraint tree and the search tree.

To generate a new search tree node, the PSM takes an atom from a search tree node and
attempts to unify the atom with the head of some program clause. If the unification succeeds,
with a unifier 4, a descendent node is produced by attaching the body of the clause used in the
unification to the rest of the literals in the parent node and applying 6 to all literals in the new node.
Since the CM has already checked the parent node, only the differences between the descendent
node and its parent need to be checked to detect any new violations. Thus, the PSM sends a
CHECK-CONSTRAINTS message to the CM containing the unifier 4, the list of newly attached
literals and the node numbers of the new node and its parent.

With this information, the CM can generate the partial constraints associated with the new
PSM node and if no violation occurs, it can place a new node containing the partial constraints in
the constraint tree. If a violation does occur, the CM sends a VIOLATION message to the PSM
to indicate that the PSM should curtail search below the node in question.

3.1.2 Testing for Violations

When a CM receives a CHECK_CONSTRAINTS message with a list of new literals for a search tree
node N and a substitution 8, the following algorithm is performed to either send a VIOLATION
message to the PSMs, or to create a (possibly empty) list LN of partial constraints for node N:

1. Initialize LN to be the empty list. Initialize L to be the list of all the integrity constraints in
IC.




2. If N is a node that is not the root of the search tree, then find the partial constraints list, L',
of the parent node of N. For each partial constraint C in L, if any of the evaluable literals in
C8 can be evaluated to false then do nothing (this means that the partial constraint C8 will
not be violated by N or any of N’s descendants in the search tree); otherwise, add C#@ to L.

3. Use the Partial Subsumption Algorithm in B to test N and each member C of L. The result
of the test will be one of the following:

e If C partially subsumes the new literals in N and produces an empty partial constraint
then send a VIOLATION message to the PSMs and go to the next step.

e If C partially subsumes the new literals in N and produces no empty partial constraints
then add the resulting new partial constraint(s) to LN.

e Otherwise, C does not partially subsume the new literals in N. If C is one of the con-
straints in IC then do nothing (this means that C is not relevant to N). Otherwise, C is
a partial constraint inherited from the parent of N; add C to LN.

4. Halt.

3.1.3 Evaluable Predicates and Equality in the Constraint Machine

To carry out the test for violations, the CM must be able to evaluate literals with evaluable predi-
cates. An attempt to evaluate a literal has three possible results: true, false, or delay evaluation.
Unlike the other evaluable literals, when a literal whose predicate is EQ evaluates to true, it returns
a (possibly empty) substitution 8 to be applied to the partial constraint containing the EQ literal.

Variable substitution may introduce new variables that do not participate in partial subsump-
tion. Rather, these variables become instantiated by substitutions produced by EQ evaluation.
The compiler that prepares integrity constraints for use in the CM performs variable substi-
tution on all the integrity constraints. If an integrity constraint contains any function sym-
bols, the variable substituted form will contain new variables that occur only in EQ literals.
For example, consider the constraint — P(f(z,y)),Q(f(y,z)) whose variable substituted form
is — P(z0), Q(z1), EQ(z0, f(z,¥)), EQ(z1, f(y,z)). The variables x and y now occur only in
the EQ literals. We call these variables, which were isolated in EQ literals by variable substitution,
EQ-only variables.

If an EQ literal contains two terms that can be unified with a substitution # that replaces
EQ-only variables and no others, then the literal evaluates to true and @ is applied to the other
literals in the partial constraint; otherwise the evaluation is delayed. In the example, all EQ literals
must be delayed.

If the CM receives from the PSM the trivial list of literals P(f(a,b)), then it constructs a
new partial constraint — Q(z1), EQ(f(a,bd), f(z,¥)), EQ(z1, f(y,z)). The first EQ literal can
be evaluated to true with the substitution {a/z,b/y} to produce — Q(z1), EQ(zl, f(b,a)). The
variable x1 is not an EQ-only variable, so the EQ literal must be delayed. Finally, if the PSM sends




the list Q(f(c,¢)) resulting in the new partial constraint «— EQ(f(c,¢), f(b,a)), the EQ literal
evaluates to false.

The evaluation of EQ is defined formally as follows:

¢ if the arguments are ground and not syntactically identical, return false.
¢ if the arguments are syntactically identical, return true.

o if there exists a substitution # that makes the arguments syntactically identical and which
replaces EQ-only variables with terms containing no EQ-only variables, return true and apply
0 to the other literals in the partial constraint.

e otherwise, delay evaluation.

4 Experiments, Results, and Evaluation

A series of experiments were performed to: 1) compare two different constraint handling methods,
and 2) investigate whether significant classes of logic programs can use integrity constraints effec-
tively to process queries. We selected three domains which characterize widely used classes of logic
programming problems. The domains involve the representation of inheritance hierarchies, the use
of data which tends to cluster around discrete values, and encoding generate-and-test sequences
[10). To obtain data to evaluate the utility of the constraint handling methods, three representative
programs were encoded and executed in PRISM using three execution modes: without constraints,
with CMs, and with constraints compiled into the program. To compare the performance of the
programs run under each method, we gathered response times, machine utilization statistics, and
data about communication overhead.

Our results show that using constraints improved query response time over not using constraints
with a reasonably small overhead cost. The cost of the CM method is the reallocation of half of
the processors from PSMs to CMs and an increase in the message traffic between machines. The
major cost of the compile time method was the cost of performing the compilation.

Our results also show that for all three programs, compiling the constraints reduced response
time more than using CMs did. We found that semantic compilation can affect programs in two
ways: it can statically reduce search space, and it can introduce runtime tests for pruning the search
space. When the partial constraints created by semantic compilation either are null or contain
only evaluable literals that are sufficiently bound to be evaluated at compile time, the constraints
statically reduce the search space by eliminating rules. Other types of partial constraints introduce
runtime tests. The relative performance of the different configurations depends on the complexity
of the new runtime tests and their potential to reduce the search space. ‘

Semantic compilation produced programs that could not be executed without further manip-
ulation. The compiled rules in the inheritance hierarchy program contained redundant partial
constraints — that is, some partial constraints were subsumed by other partial constraints. For effi-
ciency, the redundant constraints were omitted in the executable program. To make the constraints
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useful in the data clustering program, the variable substitution algorithm had to be augmented with
knowledge about basic number theoretic principles. For the generate-and-test program, it was not
possible to place these partial constraints in rules so that they prune search space under a left-to-
right control strategy. A new control strategy was required to delay evaluation of partial constraint
literals until they were sufficiently instantiated.

This section is organized as follows: Section 4.1 reviews the testing environment. Sections 4.2
and 4.3 present the results for the inheritance hierarchy domain and for the data clustering do-
main. Section 4.3.3 compares the results for these domains. Section 4.4 discusses our results and
observations about generate and test programs. Section 4.5 compares the results for all three
domains.

4.1 Testing Environment

The experiments involved running each program using a series of PRISM configurations. The
configurations were determined by varying 3 parameters: the number of processors used, the tasks
dedicated to each processor, and the version of the program.

A maximum of six processors were used to run programs. For the experiments using only prob-
lem solving machines (PSMs), configurations consisting of 1, 2, 4, and 6 PSMs were used to execute
the programs without constraints and with constraints compiled in. For the experiments using con-
straint machines (CMs) as well as PSMs, each PSM was coupled with a CM. The configurations for
these experiments consist of 1,2, and 3 PSM-CM pairs. In initial tests, we ran configurations with
1 CM handling all PSM nodes, but we found that in general CMs overload quickly when handling
more than one PSM.

Each original program included a rule with the form Query(X) — Py,..., P, which defined a
representative query for the program. Queries to the program were of the form — Query(X). For
each query, we used each configuration to collect the response time, the number of nodes expanded
in the proof trees, and the number of messages passed. Other data was obtained from observations
about the structures of the programs.

The BBN Butterfly version of PRISM was used to run the experiments. The BBN Butterfly
is a hybrid shared memory machine. Each processor has fast access to its own local memory and
can access memory of other processors at a slower rate. In this implementation of PRISM the
shared memory of the Butterfly is used to implement a message passing system. Each PRISM
processor maintains a disjoint address space and shares information with other processors through
the message passing system. Each PRISM machine (a PSM or a CM) corresponds to a physical
processor on the Butterfly.

Three benchmark programs were used in the evaluation, one from each of the selected domains.
The first program, animal, determines properties of animals based upon deductive rules and a
type hierarchy. Constraints are used to enforce disjoint relations in the type hierarchy. The second
program, chemistry, determines the properties ot elements in the periodic table. Constraints are
used to perform inequality checking. The third program, zebra, is a generate-and-test program
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which assigns items to houses based upon a set of properties. Constraints are used to mix the
generation and testing of items. Our program is a smaller version of the zebra program found
in the logic programming literature. (16] The source listings for all three programs appear in
Appendix C.

4.2 Inheritance Hierarchies Results

Some applications, such as representing inheritance hierarchies, model data that fall naturally into
disjoint classes; in fact, modelling these data without constraints is difficult. When disjointedness
requirements are coded as integrity constraints, nodes in the proof tree which would require an
element to belong to two or more disjoint classes can be identified easily and pruned.

For example, consider a small type reasoning system about animals, with the following query,
IDB rules and an integrity constraint that says “no birds have teeth” (i.e. Bird and HasTeeth are
disjoint classes):

Q: — Query(X)

RO: Query(X) ~ Fly(X),HasTeeth(X).
R1: Fly(X) « Bird(X).

R2: Fly(X) — Mammal(X),Winged(X).
R3: HasTeeth(X) — Type(X,“has_teeth”).
R4: Bird(X) ~ Type(X,“bird™).

R53: Mammal(X) — Type(X,“mammal”).
IC: ~ Bird(X),HasTeeth(X).

Using R1 to expand the predicate Fly in the query is unproductive, but the system will do
it anyway if the query is solved without regard to constraint information. Using IC to prune the
proof tree node that involves Bird(X) and HasTeeth(X) (Figure 2) eliminates the useless interaction
between R1 and R3. If IC is used with the runtime approach, the subquery « Bird(X),HasTeeth(X)
is pruned after it is checked by partial subsumption and found to violate a constraint.

In the compiled method, the program would be flattened to produce:
RO’: Query2(X) — Type(X,“bird”), Type(X,“has_teeth”).
RO”: Query2(X) ~ Type(X,“mammal”),Winged(X),Type(X,“has teeth”).
IC": ~ Type(X,Y1),Type(X,Y2),EQ(Y1,“bird”),EQ(Y2,“has teeth”).

IC’ partially subsumes R0’ to produce two partial constraints one of which is
{~ EQ(“bird”,“bird”),EQ(“has teeth”,“has_teeth”). The body of the partial constraint evaluates
to true; thus the partial constraint evaluates to false and R0’ can be thrown away.

On the other hand, IC’ partially subsumes R0” to produce the partial constraints:
{~ EQ(“mammal”,“bird”),EQ(“has teeth” ,“has teeth”)} and
{~ EQ(“mammal”,“bird”),EQ(“mammal”,“has teeth”)}. Each partial constraint contains an atom
that evaluates to false; thus neither partial constraint can be violated by R0”. Thus, no partial
constraint literals are added to R0”. The semantically compiled definition for the predicate Query
is simply R0O”.
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— Query(X)

RO
— Fly(X), HasTeeth(X) (partial constraint — Bird(X))
R/ \m
o~ Bird(X), HasTeeth(X) - Mmmﬂnji);:;:i&g)ed(X). (partial constraint — Bird(X))
R4 RS
o~ Type(X, “bird"), HasTeeth(X) - Tm(xm;)).wmsed(x). (pactial constraint — Bird(X))
R3 R3
— Type(X,“bird"), Type(X, “has teeth”) ~ Type(X,“mammal”),Winged(X),
Type(X. “has socth”) (partial constraint ~ Bird(X))

s%’runed by CM below this node

Figure 2: Original Search Tree for the Animal Program

Figure 2 shows the search tree for the query using the original rules and Figure 3 shows the tree
for the compiled rules. The search tree for Q using R0” is much smaller than the original tree.

4.2.1 Results and Analysis for the Animal Program

The animal program used in the experiments includes 18 integrity constraints and models a much
larger set of facts about the animal world than the example abave.

For the animal program, semaatic compilation reduced the search space at compile time. The
resulting partial constraints contained only evaluable literals and thus introduced no new runtime
deduction. The rule for the Query predicate was flattened into 43 separate rules corresponding to
43 paths in the search tree. For all but one of the rules, the partial constraints were evaluated
to false and the rule was thrown out. As a result, after compilation, the Query predicate was
defined by a single rule in which the processing required to evaluate the partial constraint literals

was negligible.

In the semantically compiled rule for Query, some of the partial constraints attached to the rule
were redundant in that they were subsumed by other partial constraints. For example, the partial
constraints attached to the compiled rule included {~ EQ(“whale”,C)} and
{~ EQ(“whale”,C),EQ(“duck”,B)}. The first partial constraint subsumes the second and renders
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o~ Query(X)

“01

~— Type(X,“mammal”),Winged(X),Type(X,“has teeth™)

Figure 3: Search Tree for the Compiled Animal Program

the second constraint redundant. To maximize the benefit of the constraints, in a post-compilation
phase we eliminated the redundant partial constraints attached to the final axiom.

As can be derived from the data in Figure 4, the compiled program’s search space was 23 percent
of the original search space without constraints. Running the program with CMs covered a search
space that was 36 percent of the original. The CM-PSM search space was slightly larger than the
compiled search space because compilation both flattens and prunes and the CM only prunes.

The response times for the semantically compiled program were much faster than for the original
program. and slightly faster than for the program run with the constraint machines. Figure 5 shows
the response times for the animal program usirg each configuration.

4.3 Data Clustering Results

In some knowledge domains, extensional data tend to cluster naturally according to the values
taken by certain arguments. Constraints can specify the nature of the clusters and thus partition
the search space. In addition, we can write rules that reflect the clustering. When a query involves
a particular cluster or set of clusters, the constraints can be used to minimize the amount of data
retrieval that must be done to answer the query.

For example, consider a chemistry program which captures physical properties of elements, and
a query that asks for metals with melting points that are less than 961. The following is the query
and a fragment of the program:

Q: — Query(X).

RO: Query(X) « In_Group(G,X), Is_Metal(X), Melting _Point(M,X), LESS(M,961).

R1: In_Group(“IA”,X) ~ Member(N,(1, 3, 11, 19, 37, 55, 87]), Atomic. Number(N,X),
Is_Element(X).

R2: In_Group(“IB”,X) — Member(N,{29, 47, 79]), Atomic Number(N,X), Is_Element(X).

13




Method Configuration | Number | Number | Size CM CM Msg.
of Nodes | of Msgs. | of Msgs. | Msgs. | Time
1) (2) 3 1@
Compiled 1 PSM 68 6 115 NA NA
Programs 2 PSMs 68 35 1105
4 PSMs 68 50 1384
6 PSMs 68 48 1191
With 1CM 1PSM 104 114 3298 107 11.24 %
CMs 2CMs 2PSMs | 104 169 4013 122 12.34 %
' 3CMs 3PSMs | 104 142 3626 117 | 12.94 %
No 1 PSM 290 6 41 NA NA
Constraints | 2 PSMs 290 119 1660
4 PSMs 290 162 2180
6 PSMs 290 211 2376

“msg.” abbreviates “message”.
(1) Number of nodes in the proof tree created while finding all answers to the query.
(2) Total size of all messages sent, in bytes.

(3) Number of messages sent by or sent to CMs.
(4) Time spent by PSMs in processing CM messages, as a percent of total PSM active time.

Figure 4: Data Collected for the Animals Program
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R3: Is Metal(X) — Atomic Number(N,X), Range(N,[[2,5], [10,14], [18,32], [36,51], [54,84], [86,104]]).

The melting points of metals tend to cluster within groups in the periodic table. We can take
advantage of this fact with the following integrity constraint:

IC1: — In.Group(“IB” X), Is Metal(X), Melting Point(M,X), LESS(M,961).

The constraint says that the melting point of any metal in group IB is at least 961, which is
outside the range specified in the query. If IC1 is used to process the query at runtime, we can
avoid retrieving the group IB elements by pruning the proof tree node that results when rule R2 is
used to expand the atom In_Group(G,X). Figure 6 shows where the tree may be pruned.

~ Query(X)
Ro
= In.Group(G,X), s Metal(X), Melting Point(M,X), M < 961 (partial constraint — G=*IB" )
R1 (G/“IA") / R2 (G/“IB")\ )
— Member(N,{1,3,...]),Atomic Number(N,X), ~ Member(N,[29,47,79]),Atomic.Number({N,X),

Is Element(X),Is Metal(X), Is.Element(X),Is Metal(X), (partial constraint — “IB"=“IB")
Melting.Point(M,X),M<961 Melting_Point(M,X) M<961

® L )

[ ] L

*Pruned by CM below this node

Figure 6: Original Search Tree for the Chemistry Program

If IC1 is semantically compiled into the query rule in the program fragment, we first get the
flattened rules and flattened constraint:

R0’: Query(X) « Member(N,(1, 3, 11, 19, 37, 53, 87]), Atomic Number(N,X), Is_Element(X),
Atomic Number(N1,X), Range(N1,([2,5], [10,14], [18,32], (36,51, [54,84], [86,104]]),
Melting Point(M,X), LESS(M,961).

R0”: Query(X) «~ Member(N,[29, 47, 79]), Atomic.number(N,X), Is_Element(X),
Atomic Number(N1,X), Range(N1,[[2,5], [10,14], [18,32], [36,51], [54,84], [86,104]]),
Melting Point(M,X), LESS(M,961).

IC1": « Member(N,[29, 47, 79]), Atomic Number(N,X), Is_Element(X),
Atomic Number(N1,X), Range(N1,([2,5], (10,14], (18,32], (36,51], [54,84], (86,104]]),
Melting Point(M,X), LESS(M,961).
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= Query(X)

— Member(N,(1,3....]),Atomic.Number(N,X),Is Element(X),
Atomic Number(N1,X),Range(N1,([2,5],[10.14],...),
Melting Pointing(M.X),M<961

L ]

Figure 7: Search Tree for the Compiled Chemistry Program

Variable substitution and partial subsumption eliminate R0” to produce a new program frag-
ment consisting of the single rule, R0’. Figure 7 shows the search tree for the compiled program.
The search space for R0’ alone is half of that for R0’ and R0” combined.

4.3.1 Evaluable Predicates in Integrity Constraints

In the example above, the query and the integrity constraint both specify melting points that are
less than 961. In contrast to this, the chemistry program used in the experiments contains a query
rule and integrity constraints that specify distinct value ranges for a particular property. The
experiments show that in order to use the integrity constraints to improve query processing, basic
number theoretic principles must be used to rewrite atoms that contain the predicate LESS.

For example, suppose that a program contains the following rule:

R: Query(X) ~ p(X), LESS(X,9).

The rule defines a query that asks for all the elements in relation p whose values are less than
9. Consider the following integrity constraint that says that the value of each element in relation
p is at least 10:

IC: — p(W), LESS(W,10).

The variable substitution algorithm does not replace terms in atoms containing evaluable pred-
icates; hence the constraint IC is in variable substituted form. Applying partial subsumption to IC
and R produces the partial constraint — LESS(X,10) which can not be used to prune the subquery
~ p(X), LESS(X,9) from a proof tree. In order to prune the subquery, the partial subsumption
algorithm would need to use basic number theoretic principles and the atom LESS(X,9) in the
subquery to figure out that if a number X is less than 9 then it is also less than 10.
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In order to use integrity constraints for inequality checking in the experiments, the variable
substitution algorithm was augmented with a basic number theoretic principle. Each occurrance
of a constant in an atom whose predicate is LESS is replaced by a unique variable. Then, an atom
whose predicate is LEQ is added to the constraint to relate the new variable and the constant (LEQ
stands for less-than-or-equal). Similarly, each duplicate occurrance of a variable in an atom whose
predicate is LESS is replaced by a unique variable and an atom whose predicate is LEQ is added to
the constraint to relate the new and old variables. The augmented variable substitution algorithm
produces the following variable substituted form for the constraint IC:

IC": — p(W), LESS(Y,Z), LEQ(W.,Y), LEQ(Z,10).

Applying partial subsumption to IC’ and R produces the partial constraint «— LEQ(X,X),
LEQ(9,10). This partial constraint evaluates to false; hence it can be used to prune the subquery
~ p(X), LESS(X,9) from a proof tree.

4.3.2 Results and Analysis for the Chemistry Program

The experimental results for the chemistry program were very similar to the results for the animal
program. In both programs, semaatic compilation eliminated branches from the search space at
compile time without introducing new deduction at runtime. Flattening the rule for chemistry’s
Query predicate produced two rules. For one of the rules, the partial constraint evaluated to false
leaving a single rule with a smaller search space.

Also like the animal program, both the CM-PSM search space and the compiled search space
are smaller than the search space for the original program. Furthermore, the compiled search space
is smaller than the CM-PSM search space because compilation cuts branches from the flattened
program and the CM cuts branches from the unflattened program. As the data in Figure 8 indicate,
the compiled search space was 18 percent of the original search space, and usxng CMs yielded a
search space that was 43.5 percent of the original.

Figure 9 shows the response times for the chemistry program using each configuration. The
compiled chemistry program running on one machine ran faster than the original program run on
either 6 PSMs or 3 CM-PSM pairs. The response times for the original version run on PSMs-only
were the slowest. Hence, the compiled version running on a sequential processor outperformed the
other approaches running on up to 6 parallel processors.

4.3.3 Further Analysis of the Chemistry and Animal Programs

In the animal and chemistry programs, as processors are added, speed-up in the configurations
using constraints is much less than the speed-up with no constraints. However, the programs
using constraints had the best response times. This phenomenon occurs because constraints prune
potential parallel branches and thus eliminate some OR parallelism. When the programs are
executed without constraints, these OR-branches can be expanded on separate processors. So
as more processors are added, speed-up occurs. When executing with constraints, depending on
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Method Configuration | Number | Number | Size CM CM Msg.
of Nodes | of Msgs. | of Msgs. | Msgs. | Time
(1) (2) (3) (4)
Compiled 1 PSM 76 7 275 NA NA
Programs 2 PSMs 76 59 2913
4 PSMs 76 109 4715
6 PSMs 76 122 4522
With 1CM 1PSM | 173 184 8227 176 | 7.96 % |
CMs 2CMs 2PSMs | 168 290 13987 215 9.37 %
3CMs 3PSMs | 170 380 17695 237 10.37 %
No 1 PSM 390 7 156 NA | NA
Constraints | 2 PSMs 390 45 2753
4 PSMs 390 150 8242
6 PSMs 390 348 14255

“msg.” abbreviates “message”.

(1) Number of nodes in the proof tree created while finding all answers to the query.

(2) Total size of all messages sent, in bytes.

(3) Number of messages sent by or sent to CMs.

(4) Time spent by PSMs in processing CM messages, as a percent of total PSM active time.

Figure 8: Data Collected for the Chemistry Program.
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the application, some opportunities for parallelism may remain and result in speed-up as more
processing elements are added.

In our experiments with the animal and chemistry programs, the response time for the compiled
version run with only PSMs was consistently lower than the response time for the uncompiled
program run with CM-PSM pairs. Furthermore, the response times for the CM-PSM pairs were
better than the response times for the uncompiled program run only on PSMs. However, a simple
example shows that in some cases, for uncompiled programs, neither the CM-PSM configuration
nor the PSM-only configuration is clearly preferable.

In the following scenario, a configuration running an uncompiled program on PSMs can have
the same performance or better than a configuration running the program with CMs and PSMs.
Configurations with CMs assign a CM to each PSM. So given 4 processors, we could configure them
as 4 PSMs or as 2 CM-PSM pairs. Consider an ideal situation in which a query’s search tree has 4
identical branches. If 2 branches are pruned by the CMs, the query would have the same runtime for
both configurations. Additionly, both configurations would utilize all machines. Suppose instead
that one of the CMs pruned one hranch and the other none. The PSM-only configuration would
utilize all machines equally, while one CM would lay idle in the CM-PSM configuration. Also, the
extra problem solving power could result in a better runtime using the PSM-only configuration.

The behavior of the chemistry program approximates the ideal situation. The original search
tree had two branches one of which was eliminated by the CM. The remaining half of the search
tree had roughly half of the opportunities for parallelism. Thus, as shown in Figure 9, the behavior
of the uncompiled program run with CM-PSM pairs was similar to the behavior of the uncompiled
program run on PSMs only.

4.4 Generate-and-Test Results

Generate-and-test is a common logic programming technique often used for constraint satisfaction
problems. Each possible solution is generated and then checked to determine whether it satisfies the
test conditions. A generate-and-test program has a clear declarative meaning and is easy to write
because the generation phase is independent of the test conditions. However, such a program can
potentially be inefficient. Partial evaluation [14] and coroutining (3] are existing paradigms which
transform a generate-and-test program at compile time to make it more efficient. An alternative
way to write generate-and-test programs is to encode the generate routine in the intensional rules
and the test conditions as integrity constraints. This encoding preserves the declarative meaning
of the program.

Both the compiled approach and the runtime approach can be used to apply test conditions to
partially built solutions as the intensional program generates them.

Semantically compiling the constraints into the program modifies the program so that the
testing phase is incorporated into the generation phase at compile time. However, to apply the
test predicates to appropriate partial structures, the compiled approach requires additional runtime
support. In the previous domains, the constraints were most useful when compiled into the rule for
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the Query predicate. In constrast, in the generate-and-test domain, the constraints must apply at
each level of recursion ~ therefore, constraints must be compiled into the recursive rule for Generate.

Constraint tests that operate on successive data elements must be delayed until the next el-
ements are generated. Delayed evaluation requires a more complex control strategy than the
normal left-to-right Prolog strategy. For MuProlog, {12, 13] suggests the use of wait-predicates to
achieve delayed evaluation. For the compiled programs, we used PRISM’s ability to support arbi-
trary literal selection strategies to achieve delayed evaluation. In the CM-PSM configurations, the
need for delayed evaluation is handled automatically when the CM propagates partial constraints
to subqueries.

Some, but not all, generate-and-test problems can be written efficiently with constraints. The
following section presents a program that can be coded efficiently and discusses our experimental
data for the program. The subsequent section presents the types of constraints that cannot be
coded efficently. The N-Queens example shows a specific problematic case.

4.4.1 The Zebra Program

Usually in generate-and-test programs, the generated structure is either a list or a function of
a function, where the size may or may not be fixed and each element is chosen from a possible
solution set. The test conditions may impose conditions on individual elements or on combinations
of elements.

Consider the problem of finding “who owns the zebra”. The essence of the problem is “There
are five houses, each of different color, inhabited by people of different nationalities, with different
pets, drinks and cigarettes. They satisfy some constraints coded as IC1 and IC2. We have to find
who lives where and who owns the zebra.” The following rules are the main clauses of a generate-
and-test program that solves a scaled down Zebra problem involving only color and nationality:

Query(Houselist) — Generate(Houselist,Colors,Nationalities,),
Test(Houselist).

Generate([],X1,X2).

Generate([house(C,N) | Rest],Colors,Nationalities) ~—
Choose( C,Colors,RestColors),
Choose(N,Nationalities,RestNationalities),
Generate(Rest,RestColor,RestNationalites)).

The integrity constraint IC1 says that if a list of houses begins with a green house, then a
red house must be the second element in the list. The integrity constraint IC2 says that no list
of houses may consist of a single green house. IC1 and IC2 can be used together to impose the
condition that “The green house must be immediately followed by the red house” in the solution
to the problem.

IC1: — Generate([house( “green” ,N1),house(C2,N2) | R], Cs, Ns), NEQ(C2,“red”).
IC2: — Generate([house(green,N3)]).
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If the constraints were semantically compiled into the rule for the Query predicate only, then
the constraint tests would only check the top elements of the list of houses. But we want them to
apply at each position in the list. When the constraints are compiled into both the rule for Generate
and the rule for the Query predicate, the structure of the list is checked at each generation step.

Applying variable substitution to IC1 and IC2 produces the variable substituted forms:

IC1’: « Generate(X, Cs, Ns), NEQ(C2,“red”), EQ(C1, “green”),
EQ(X, [house(C1,N1),house(C2,N2) | R]).
IC2": ~ Generate(X, Cs, Ns), EQ(C3, “green”), EQ(X, [house(C3,N3)}).

Merging the Generate rule with IC1’ and IC2’' produces the partial constraints P1 and P2,
respectively, and the semantically constrained rule R1:

Pl: — NEQ(C2, “red”), EQ(C1, “green”),
EQ(Rest, [house(C1,N1),house(C2,N2) | R]).

P2: — EQ(C3, “green”),EQ(Rest, [house(C3,N3)]).

R1: Generate([house(C,N) | Rest],Colors,Nationalities) «—
Choose(C,Colors,RestColors),
Choose(N,Nationalities,RestNationalities),
(NEQ(Rest,[house(C1,N1),house(C2,N2) | R]) V EQ(C2,“red”) v NEQ(C1,“green")),
(NEQ(Rest, [house(C3,N3)]) v NEQ(C3, “green™)),
Generate(Rest,RestColor,RestNationalites)).

At this point, the semantically constrained rule R1 contains disjunctions that must be elimi-
nated by unfolding the rule. The unfolding process must preserve variables, such as C1, that do
not occur in the rule outside of the disjunctions. For example, consider the first disjunction which
consists of three tests and is satisfied if any one of the tests succeeds. If the variable Rest unifies
with the list [house(C1,N1),house(C2,N2) | R] then the first test will fail; however, the bindings
for C1 and C2 that the unification produces will be lost, and without these bindings the other two
tests can not be performed. The bindings can be preserved by rewriting the first disjunction in the
following equivalent form:

(NEQ(Rest, [house(C1,N1),house(C2,N2) | R]) V
(EQ(Rest, [house(C1,N1),house(C2,N2) | R]), EQ(C2, “red”)) Vv
(EQ(Rest, [house(C1,N1),house(C2,N2) | R]), NEQ(C1, “green”)))

Similarly, the second disjunction can be rewritten as:

(NEQ(Rest, (house(C3,N3)]) v (EQ(Rest, [house(C3,N3)]), NEQ(C3, “green”)))

After rewriting the disjunctions in the semantically constrained rule it can be unfolded to
produce:

Generate([house(C,N) | Rest],Colors,Nationalities) —
Choose(C,Colors,RestColors),
Choose(N,Nationalities,RestNationalities),
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Test1(Rest),
Test2(Rest),
Genei ste(Rest,RestColor,RestNationalites)).

Testl(Rest) « (NEQ(Rest, [house(C1,N1),house(C2,N2) | R]).
Test1([house(C1,N1),house(“red”,N2) | R]).
Test1([house(C1,N1),house(C2,N2) | R]) — NEQ(C1, “green”).

Test2(Rest) — NEQ(Rest, [house(C3,N3))).
Test2([house(C3,N3)]) — NEQ(C3,“green”).

Notice that Test1 must wait until the recursive call to Generate has chosen the next two elements
in the list, and Test2 must wait until the next element in the list is chosen.

4.4.2 Results and Analysis for the Zebra Program

For the chemistry and animal programs, the compilation process trimmed the search space by
eliminating branches at compile time. In constrast, for the zebra program, compilation introduced
runtime tests to be performed by the PSM in order to prune the search space. As a result, the gain
from performing compilation is smaller for the zebra program than for the animal and chemistry
programs.

In further contrast to the animal and chemistry programs, the search space for the zebra pro-
gram run with CMs was smaller than the search space for the compiled program. The CM handles
partial contraint literals by generating new partial constraints for a subquery and propagating them
to the subquery’s children until they are evaluable. In contrast, when the partial constraint literals
are added to the compiled programs, they become part of the search space that must be handled
by the PSM. The CM-PSM search space was 29 percent of the original search space, whereas the
compiled program space was 44 percent of the original.

Although the search space was smaller when using CMs (Figure 10, the compiled version still
had faster response times than the CM version (Figure 11). This phenomenon arises because when
executing with CMs, half the processors are allocated to be CMs instead of PSMs. Even after
pruning, the program has much inherent parallelism. The compiled version, running on all PSMs,
can fully exploit the parallelism. However, the CM version, running with half the number of PSMs,
requires more processors to fully exploit the parallelism.

As Figure 11 shows, when we run the compiled program on 2 PSMs and when we run the
original program with 2 PSMs and 2 CMs, we get similar response times. Also, when the compiled
program is run with 4 PSMs and the original with 3 CM-PSM pairs, we get similar response times.
This indicates that a more flexible processor allocation strategy which assigns more than one PSM
to each CM may produce CM response times that would be better than the compiled version.

Overall, the compiled version run on 6 machines was fastest, and the configurations with con-
straints produced better response times than the configurations without constraints.
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Method Configuration | Number | Number | Size CM CM Msg.
of Nodes | of Msgs. | of Msgs. | Msgs. | Time
_ 1 (2) (3) 4) j
[ Compiled |1 PSM 273 9 387 NA | NA
Programs 2 PSMs 273 94 7674
4 PSMs 273 111 9683
6 PSMs 273 270 20004
With 1CM 1PSM 156 169 10846 159 6.66 %
CMs 2CMs 2PSMs | 181 240 15423 199 7.57 %
3CMs 3PSMs | 198 232 14902 209 7.86 %
No 1 PSM 615 9 307 NA NA
Constraints | 2 PSMs 615 105 8185
4 PSMs 615 87 7016
6 PSMs 615 179 12588

“msg.” abbreviates “message”.
(1) Number of nodes in the proof tree created while finding all answers to the query.
(2) Total size of all messages sent, in bytes.

(3) Number of messages sent by or sent to CMs.
(4) Time spent by PSMs in processing CM messages, as a percent of total PSM active time.

Figure 10: Data Collected for the Zebra Program.
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4.4.3 Using Constraints With Generate-and-Test Programs

The example in the preceeding section showed a case where integrity constraints can be used to
express test conditions for generate and test programs. However, it is not possible to efficiently
encode all test sequences as integrity constraints. In this section the types of tests that can be
efficiently encoded as integrity constraints are outlined and a problematic program is given.

In generate-and-test programs, the generating phase generates the various possible states one
by one, and the testing phase rejects states which do not satisfy some conditions. Representing a
state as a list of records, where a record consists of a function or a fixed-length list of functions,
allows integrity constraints to be coded as restrictions on the kind of list the Generate predicate
can generate. For example, Generate with its argument might look like
Generate([f1(X1,.--)s f2(X2y-. )5« - . fa(Xn,...) | Rest]) and a test condition might restrict the
domain of the first two arguments - for example, — NE(X}, X3).

A second issue is what predicate the constraints concern. In the example above the constraints
mention the Generate predicate. However it is possible to express many of the same constraints on
the Query predicate. An initial observation is that constraints on the Generate predicate apply at
each postition in the list. In contrast, constraints on the Query predicate apply only at the first
position of the list. This is because the generate procedure is recursively called and the constraints
apply at each level of the recursion. The constraint:

— Query([f(“blue”,“beer”) | Tail}),

states that the first element of generated structure cannot have “blue” as its first argument and
“beer” as its second. The constraint:

«— Generate([f(“blue”,“beer”) | Tail]),
says that no list element can have “blue” as its first argument and “beer” as its second argument.

A series of test conditions are presented and constraints are provided which enforce the con-
straint. The encoding of the constraint using the Generate and Query predicates are contrasted.

1. A positive statement about a particular position specified from the beginning of the list.

“The second element generated is blue”
~— Query([S,B | Tail]),NE(B,“blue”).

2. A negative statement about a particular position specified from the beginning of the list.

“The second element generated cannot be blue”
— Query([S,“blue” | Tail]).

The previous constraints could be written using the Generate predicate only if the length of
the generated structure were known in advance. The structure in the constraint would contain
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the proper number of elements (that is no Tail variable) and would thus apply only in the proper
situation.

In addition, unless explicitly noted the following constraints can make both positive and negative
statements as illustrated above.

3. A negative/positive statement about a particular position specified from the end of the list.
“The second to last element of the list cannot be green”
— Generate([“green” , Last]).

The constraint can also be encoded on the Query predicate if the length of the list is known.

4. Constraints involving the inner structure of all elements generated in the list.
“The blue house cannot be the beer house”

~— Generate([house(“blue”,“beer”) | Tail]).

To express this constraint on the Query predicate requires O(List-size) constraints and for the
length of the list to be known.

5. Constraints involving records that are a fixed number of records apart.
“The blue house is immediately to the left-of the beer house”

~— Generate([house(“blue”,.),house( ,R) | Tail]),NE(“beer”,R).
~— Generate([house(R,.),house( ,“beer”) | Tail]),NE(“blue”,R).

Both constraints are necessary. The first constraint allows the beer house to appear without
having the blue house be to its left. The second constraint allows the blue house to appear without
having the beer house to its right. This test condition would require 2*Q(list-size) constraints to
state using the Query predicate. In addition the list length would have to be known.

8. Constraints involving records that are an unspecified number of records apart.

“The blue house is before the beer house”

To encode this constraint using the Generate predicate requires knowing the length of the
list and requires 2*O(list-length) constraints. To encode the constraint using the query predicate
requires 2*O(list-length)? constraints and also requires knowing the length of the list.

These examples show that the number of constraints required to express a test condition varies
with the nature of the test and the predicate used to express the test. Even when a structure has
a known size, and when elements in the structure have an easily describable relationship, a test
which evaluates the structure to determine some property cannot be coded efficiently.
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4.4.4 The N-Queens Problem

In the Zebra problem, all of the test conditions can be coded as integrity constraints. However,
in the N-Queens problem, even though it is possible to code all the test conditions as integrity
constraints, the resulting program is very inefficient.

Suppose we must position N queens in an N*N rectangular space so that they can not attack
each other. One way to represent a positioning of queens on the board is by using lists and a func-
tion “pair”. A positioning of 4 queens in an 4*4 board with all the queens on the second column is
represented as [pair(4,2), pair(3,2), pair(2,2), pair(1,2)]. Consider the following program fragment
to solve the problem:

NQueens(N,Solution) «— Generate(N,Solution) , Test(Solution).

Generate(1, [pair(1,Col)] ) — GiveMeQOneByOne(Col).

Generate(M, [pair(M,Col) | Tail) ) « NE(M,1), SUM(N,1,M) , Generate(N,Tail),
GiveMeOneByOne(Col).

This program automatically insures that the rows are unique because the rows are set by the
variable M. So we only need constraints to distinguish the diagonals and columns - N-1 constraints
for the columns and constraints for the diagonals. To distinguish the columns, we can have con-
straints such as :

«— Generate(Rows, [pair(Rowl,Col), pair(Row2,Col) | Rest]).

which means we can not have queens in consecutive rows and in the same column; likewise, we
would need constraints like — Generate(Rows, [pair(Row1,Col),P,pair(Row3,Col) | Rest]).

to say that we cannot have queen in the same column but two rows apart, three rows apart, up
to N-1 rows apart. To distinguish diagonals, we can have a constraint such as: ~— Generate(Rows,
[pair(X1,Y1),pair(X2,Y?2) | Rest)),

AbsDiff(X1,X2,DX),AbsDiff(Y1,Y2,DY),EQ(DX,DY).

which ensure that queens in consecutive rows are not in the same columns. Again we would have
to provide constraints for two rows apart, three rows apart up to N-1 rows apart. This approach
requires that the maximum value of N be known when writing the constraints.

We conclude that using integrity constraints allows us to prune the search space to some extent
for generate-and-test programs. The extent to which the search space can be reduced depends on
the nature of the individual problem and its test conditions, on how many of the test conditions
can be coded efficiently, and on how many integrity constraints we are willing to support. If the
principle test conditions can be encoded as integrity constraints, semantic compilation can be used.
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4.4.5 Alternative Approaches

Two alternative approaches, partial evaluation and co-routining, have been suggested which allow
efficient execution of declaratively clean generate-and-test programs. Partial evaluation is a compile
time approach which takes an existing program and transforms it into an equivalent program which
executes efficiently left-to-right. Knowledge about when test predicates are ready to execute is used
to unfold the original program and maanipulate it so that the test predicates are inserted in the
proper position. Co-routining is a run time approach. It allows generate-and-test procedures to
execute in an interleaved manner. First, the generate procedure creates some structure and then
the test procedure tests it.

Using the compiled approach to handling integrity constraints provides a half-way point between
partial evaluation and co-routining. Compilation integrates test procedures with the generate
procedures. However some program transformations are needed to yield a functioning program.
In addition, the resulting program may require that test predicates delay evaluation until the
arguments are sufficiently bound. Note that a delayed execution can be seen as a very simple
form of co-routining. The compiled approach provides a theoretical framework which allows test
conditions to be mixed with generation clauses.

4.5 Conclusions

Our experimental data shows that for three widely used knowledge base domains runtime per-
formance for query processing can be improved by using integrity constraints. In this section, we
analyze the relative merits of the runtime and compiled approaches to handling integrity constraints.

4.5.1 Runtime Approach vs No Constraints

The collected data shows that for the three domains under consideration the runtime approach
performs better than using no constraints. Although this result holds for our application programs,
examples show that it does not always hold. In section 4.3.3 , we described how allocating machines
as CMs can hurt performance by preventing parallel processing of the search tree. Basically,
when processors are allocated as CMs, they are not available for exploiting the parallelism in the
program. As a result, if the CM does not trim out sufficient search space, it does not contribute
to the processing of the program as much as if it were a PSM. The performance of the runtime
approach versus the performance without using constraints seems to be specific to the application.
If a particular query produces a proof tree that has many unproductive branches, the runtime
approach may perform better. On the other hand, if most of the branches of a query’s proof tree
produce answers, utilizing all available processors as PSMs may yield a better response time.

In addition to the loss of PSM power, the CM configurations have a slightly higher communi-
cation overhead than the PSM-only configurations. When processors are assigned to be CM-PSM
pairs rather than all PSMs, the number of exchanged messages increases. The extra messages have
two sources: the communication to coordinate CM-PSM pairs and the propagation of violation in-
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formation to children PSMs. Additional communication and processing occurs when a PSM sends
a node to its CM partner and then sends the same node to another PSM for processing. The CM
partner of the receiving PSM must send a message to the CM associated with the original PSM in
order to retrieve the partial subsumption list associated with the node.

In general, the message traffic of CM-PSM configurations with few processors have a higher
percentage of constraint related traffic than CM-PSM configurations with many processors. Con-
straint machines require a large fixed communication cost and a small variable communication cost.
The fixed cost occurs because messages must be sent from the PSMs to the CMs for each node
in the search tree expanded by a PSM. The variable cost involves sending constraint tree nodes
between CMs. The amount of CM related messages grows slowly as more machines are utilized,
and the PSM-to-PSM message traffic grows directly with the number of PSMs utilized. Thus, with
larger configurations, there is more PSM-to-PSM traffic which is amortized over the fixed amount
of CM traffic. For example, for the zebra program, 96 percent of the traffic for one CM-PSM pair
is constraint related, for two pairs, 74 percent, and for three pairs, 65 percent.

The number of messages sent in the CM configuration and in the PSM-only configuration
are similar because of a tradeoff between CM-PSM traffic in the CM configurations and PSM-
PSM traffic in the PSM-only configurations. Overall, the overhead due to constraint machine
communication is small - 8-10 percent for the chemistry program, 11-13 percent for the animal
program and 7-8 percent for the generate-and-test program. These percentages are the amount of
total active PSM time spent packaging, sending, receiving and processing CM messages.

4.5.2 Runtime Approach vs Compiled Approach

The experimental data shows that for the selected domains the compiled approach to using integrity
constraints performs better than the runtime approach. In addition to the decrease in response
time, a significant advantage of the compiled approach is the ability to utilize all available processors
as PSMs and thus to maximize the amount of OR-parallel deduction.

The major cost of the compiled approach is the time to perform compilation. This time is not
significant and is amortized over all the queries that the system handles after compilation. If the
system processes many queries, the overhead compilation time associated with each query is very
small. In contrast, if only a single query is to be processed, then using the runtime approach may
be faster than performing compilation and then solving the query with the compiled approach. A
minor cost of the compiled approach involves defining and maintaining “query rules” - like the
rules for the predicate ‘Query” that were used in the experiments.

Query rules specify a conjunction of atoms. They can be considered to define a complex view
over the database. Defining complex views with query rules enables maximum pruning of the
search tree under the compiled approach. When a query containing a particular conjunction of
atoms occurs frequently, defining it through a query rule and compiling the rule may save time.
In contrast, under the runtime approach it is not necessary to define query rules for conjunctive
queries in order to achieve maximum pruning.
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Running the experimental programs with the constraint machines required no changes to the
programs: the programs that were run without constraint machines were also run with constraint
machines. In contrast, preparing the compiled programs for execution required extra practical
transformations to the programs. In order to completely automate the extra transformations, the
compiler would have to be modified to detect and eliminate redundant partial constraints and to
rewrite rules with disjunctions; and a final module would have to be added to the compiler to
determine whether a delayed evaluation control strategy is necessary.

In addition to incurring preprocessing costs, the compiled approach can actually increase the
amount of deduction performed. In the animal and chemistry programs, compilation produced
a clear reduction in search space at compile time. However, in the zebra program, compilation
introduced runtime tests which offer opportunities for but no guarantees of search space reduction. -
In contrast, the CM approach never introduces new deduction in the PSM because partial constraint
literals are evaluated in the CM.

For the compiled approach, additional runtime effort is required to process partial constraints
when queries are not known in advance. At compile time, semantic compilation can be performed on
the program to attach partial constraints to individual rules. When incoming queries have a single
literal in the body, the partial constraints can reduce search space as usual. However, to process
a new query that is a conjunction of literals, the runtime environment of the PSM would require
modification to merge the partial constraints and the other literals that result from expanding the
literals in the query. For example, consider the program and integrity constraint shown below.

P~Q.
R ~ S.
IC: ~ Q, S.

If we know the query — P, R at compile time and encode it as the rule Query — P, R, then
flattening produces the new rule Query «— Q, S. The new rule body is subsumed by the literals in
the integrity constraint. Hence semantic compilation will tell us at compile time that the query
violates the integrity constraint. In contrast, if there is no rule that defines a Query predicate, we can
merge the integrity constraint with the remaining two rules to produce the following semantically
constrained rules:

P—Q{~5S.}

R~S. {~Q}

If the query — P, R arrives at run time we can use the semantically constrained rules to produce
the following expanded query with two attached partial constraints: — Q,S. { — S. « Q. }. Each
partial constraint subsumes the literals in the expanded query. Hence merging the partial con-
straints with the expanded query at runtime tells us that the query violates an integrity constraint.
The CM approach requires no additional effort to support new queries because it performs partial
subsumption at runtime.

Although the problems with the compiled approach listed above may prevent it from being
useful in some applications, the approach has significant advantages. First, compilation performs
partial subsumption at compile time and in many cases removes significant portions of the source
program before execution. Second, the approach allows all computing resources to be used as PSMs
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rather than tieing up half the resources as CMs. Thus, all processors are available for exploiting the
parallelism in the problem. As a result, the compiled approach should be used whenever feasible.

5 Conclusions

A logic programming system augmented with constraint processing, data storage, and data ma-
nipulation capabilities forms the basis for a knowledge base system. Our experiments explore
whether any benefit can be gained from using knowledge base constraints for query processing. To
perform the experiments, we added constraint processing capability to an existing parallel logic
programming system, PRISM.

In the problems that we investigated, constraints allow query search space to be reduced by up to
eighty percent and response time to decrease by over seventy-five percent. In each problem domain,
the compiled approach to using integrity constraints works better than the runtime approach. In
addition, the runtime approach works better than using no constraints at all. In some cases,
external factors may indicate that using the runtime approach is more desirable than the compiled
approach. For example, a query asked only once takes more time to compile than the time saved
by using the compiled approach. These results indicate that constraints can be used to improve
query processing for the problem domains represented by the benchmark programs. Because each
problem represents a well defined domain, the experiments transcend the individual problems and
show that constraints are useful for many applications.

We found that several preprocessing steps were necessary to put the theoretical approaches of
Kohli and Chakravarthy into practice. Both the runtime and compiled approaches required the ad-
dition of knowledge about basic number theoretic principles to the variable substitution algorithm.
The compiled approach required the following additional steps: 1) the elimination of redundant
partial constraints within an axiom, 2) rewriting compiled rules that contained disjunctions, and 3)
the incorporation of a delayed evaluation control strategy for partial constraint literals in recursive
axioms.

6 Future Work

We have identified four promising areas for further investigation: characterizations of useful classes
of partial constraints; more sophisticated query transformation methods for the compiled approach;
a richer language for expressing integrity constraints, and evaluation of more flexible processor
allocation strategies.

If a knowledge base has a large set of integrity constraints, the set of partial constraints asso-
ciated with a rule in the theory may also be large. Characterizing useful partial constraints would
help select a subset of the partial constraints to be attached to the rule in semantic compilation or
to be used by constraint machines.

Additional transformation methods for queries that are not known in advance can make the

33




compiled approach more flexible. A query that consists of a conjunction of literals may have an
associated set of partial constraints for each literal. To simplify the sets of partial constraints and to
identify search tree nodes that violate the constraints, transformation methods must be developed
to performing partial subsumption at run time.

We would like to extend our approach to be able to use integrity constraints that consist
of clauses with EDB or IDB predicates in the head. This richer constraint language would allow
constraints to be used with theories whose rule bodies contain negation. In addition, Generate-and-
Test constraints such as those in the N-Queens problem which required 2(n-1) clauses to express the
constraint could be written with a single clause in the richer language. Such integrity constraints
can not be rewritten into the form « Ci,...,C,, Ey,..., E, without introducing negative EDB or
IDB literals. To apply the CM approach to negated EDB or IDB literals, the CM would have to be
able to handle negation and to delay deduction on IDB and EDB literals until they are sufficiently
instantiated. To apply the compiled approach to constraints with negated IDB and EDB literals
would involve further investigation of how to use partial constraints containing such literals.

As seen in the zebra program, some programs may benefit from having each CM serve more
than one PSM. Future research could explore whether flexible allocation strategies or dynamic
allocation of processors as CMs and PSMs is appropriate for certain applications.
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APPENDIX

A Variable Substitution Algorithm

Variable Substitution Algorithm

For each occurrence ¢ of a term in the integrity constraint, do
If ¢ occurs in an atom whose predicate is defined via facts or rules in the program, and
t is (a string, or a number, or a term f(1,...,%s), Or a variable that has occurred
in another atom whose predicate is defined via facts or rules in the program), then
replace ¢t with a new variable y, and
create an equality atom (y = t), and
append the equality atom to the end of the list of literals in the constraint. <«

The following is an example of an integrity constraint and the corresponding output formula
produced by the CMC, respectively:

~ p(2), 4(f(<)), LES5(z,3)
— p(20),(z2), LESS(20,3), EQ(z1,20), EQ(z2, f(=1))

where LESS represents < and EQ represents =.

B Partial Subsumption Algorithm

Executing the test for partial subsumption of a conjunction of literals by a constraint efficiently
is not as straightforward as it may seem. Consider the following situation. Suppose the con-
straint under consideration, C, is — P(z,y),Q(z), EQ(z,z). If the conjunction, A, contains the
literals P(u,v),S,T, then since P(z,y) in C subsumes P(u,v) in A, the partial constraint that
results is « Q(z), EQ(u,z). If, however, A contains the literals P(u,v), P(v,w),S,T, then C can
partially subsume A in two different ways: one where P(z,y) subsumes P(u,v) and the other
where P(z,y) subsumes P(v,w). The two partial constraints that result are « Q(z), EQ(u, 2) and
~ Q(2), EQ(v,z). Furthermore, if Q(z) also subsumes more than one literal in A, e.g. A being
P(u,v), P(v,w),Q(a),Q(5),Q(c), then from each of the above two partial constraints, three new
ones will result.

The list of partial constraints obtained from a constraint C and a conjunction of literals A can
be represented in a structure called a subsumption tree. Each node in this tree consists of two sets
of literals, CC and B. The Partial Subsumption Algorithm is used to construct the tree.

(Partial) Subsumption Algorithm
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0. Create a root node in which CC is the set of literals in the constraint C, and B is the set of literals
in the conjunction A. Mark this node as LIVE.

1. Choose a node marked LIVE, and mark it USED. Let its CC part be P = P1,...,Pn and its B
part be R = R1,...,Rm. Let i and j both be 1.

2. If Pi subsumes Rj with substitution 8, then go to step 3. Otherwise, go to step 6.
3. Apply 8 to all the literals in the set P - Pi to produce the set P’.

4. Remove from P’ all the evaluable literals that evaluate to true. If this makes P’ empty, then go
to step 11. Otherwise, if any of the evaluable literals in P’ evaluates to false, then go to step 6.

5. Create a child node for this node. The CC part of the new node is P’ and its B part is the set R
- Rj. If the B part is empty, then mark the new node USED, otherwise, mark it LIVE.

6. Increment j. If the result is m+1, then do the next step. Otherwise, go back to step 2.

7. (All of Rj have been tested) If no new node is created in steps 3-6, then increment i and do the
next step. Otherwise, go to step 9.

8. If i becomes n+1, then do the next step. Otherwise, set j to 1 and go back to step 2.

9. If there is still any node marked LIVE then go to step 1. Otherwise, proceed to the next step.

10. If no new node was added to the tree in all the above steps, then terminate the procedure with
a result that C does not (fully or partially) subsume A. Otherwise, the CC part of each of the leaf
nodes represents a partial constraint. Collect all such partial constraints to form a list L. Terminate

the procedure with the result that C partially subsumes A and produces the list L.

11. (From step 4) Terminate the procedure with the result that C fully subsumes A, i.e. a violation
has been detected. <«

C Program Listings

C.1 Animals Program: Semantic Hierarchy Domain

QUERY1(x,y) <- eats(x,y).
QUERY2(x) <~ (swimm(x),flys(x)).

swimnm(x)<-is_fish(x).
svimm(x)<-is_mammal(x),lives_in_sea(x).
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swimm(x)<-is_bird(x) ,has_webbed_feaet(x).
lives_in_sea(x)<-is_fish(x).
lives_in_sea(x)<-itype(x,"whale").
£flys(x)<-is_bird(x).
flys(x)<-is_mammal(x),has_wings(x).
has_wings(x)<-itype(x,"bat").
has_wings(x)<-has_feathers(x).
has_webbed_feet(x)<-itype(x,'"duck").
has_feathers(x)<-is_bird(x).
bears_young_live(x)<-is_mammal(x).
has_eggs(x)<-is_fish(x).
has_eggs(x)<-is_bird(x).
furry(x)<-is_mammal(x),lives_on_land(x).
lives_on_land(x)<-is_mammal(x).
lives_on_land(x)<-is_bird(x).
has_four_limbs(x)<-lives_on_land(x),is_mammal(x).
carnivore(x)<-has_fangs(x),is_mammal(x).
carnivore(x)<-is_fish(x),large_mouth(x).
herbivore(x)<-is_fish(x),small_mouth(x).
herbivore(x)<-has_molars(x),is_mammal(x).
has_fangs(x)<-is_cat(x).
has_molars(x)<-is_cow(x).
has_fins(x)<-lives_in_sea(x).
large_mouth(x)<-itype(x,"shark").
small_mouth(x)<-itype(x,"guppy").

eats(x,y)<-lives_together(x,y),carnivore(x) ,herbivore(y),sm(y,x).
eats(x,y)<-is_cat(x),is_bird(y).

lives_together(x,y)<-flys(x),flys(y).
lives_together(x,y)<-lives_on_land(x),lives_on_land(y).
lives_together(x,y)<-lives_in_sea(x),lives_in_sea(y).

fish(x)<-subtype(x,"fish").
is_tish(x)<-itype(x,y),fish(y).
animal (x)<-subtype(x,"animal").
is_animal(x)<-itype(x,y),animal(y).
mammal (x)<-subtype(x,"mammal").
is_mammal(x)<-itype(x,y) ,mammal(y).
bird(x)<-subtype(x,"bird").
is_bird(x)<-itype(x,y),bird(y).
cat(x)<-subtype(x,"cat").
is_cat(x)<-itype(x,y),cat(y).
cow(x)<-subtype(x,"cow").




is_cow(x)<~-itype(x,"cow"),cow(x).

subtype(x,X).
subtype(x,y)<~(constant(y), isubtypo(z y) ,subtype(x,2z)).

constant ("duck").
constant("bird").
constant("whale").
constant("cod").
constant("cat").
constant ("shark").
constant ("guppy") .
constant("bat").
constant("cow").
constant ("animal").
constant (“mammal”).
constant("fish").

itype("daffy","duck").
itype("tweety","bird").
itypo("villie",“vhalo").
itype("homer","cod").
itype("morris","cat").
itype("sam","shark").
itype("fred" , ng“ppyu) .
itype("dracula","bat").
itype(“elsie","cov").

isubtype("duck","bird").
isubtype("bat","mammal").
isubtype(”cat”,"mammal”).
isubtype("fish","animal").
isubtype("bird","animal").
isubtype("mammal","animal").
isubtype('cod","tish").
isubtype("whale","mammal").
isubtype("cow","mammal®).
isubtype(”shark”,"fish").
isubtype("guppy","fish").

smaller(x,y)<-itype(x,"“cat"),itype(y,"cow").
smaller(x,y)<-itype(x,"bat"),itype(y,"cat").
smaller(x,y)<-itype(x,"cat"),itype(y,"shark").
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smaller(x,y)<-itype(x,"cod"),itype(y,"shark").
smaller(x,y)<-itype(x,"shark"),itype(y,"vhale").
smaller(x,y)<-itype(x,"guppy"),itype(y,"cod").
sm(x,y)<-smaller(x,y).
sm(x,y)<-(smaller(x,z),sm(z,y)).

INTEGRITY CONSTRAINTS:

<-has_molars(x) ,has_fangs(x).
<-carnivore(x) ,herbivorae(x).
<-is_fish(x),is_mammal(x).
<-is_mammal(x),is_bird(x).
<-is_bird(x),lives_in_sea(x).
<-is_bird(x),is_fish(x).
<-is_cat(x),is_fish(x).
<-is_cat(x),is_bird(x).
<~lives_on_land(x),lives_in_sea(x).
<-lives_on_land(x),fish(x).

C.2 Chemistry Program: Data Clustering Domain

% Database of physical properties of metals

% Relation schema:

% metal(atomic_number,symbol,name,atomic_weight,density,melting_point)

% Units: atomic_weight, *100

% density, (g/cm~3 at 20 degrees Celsius)+*100

% melting_point, (degrees Celsius)*100

4

% Nota: Wherever the periodic table has an occurrence of a null value,

% we replace this by 0.

% Wherever the periodic table has an occurrence of a negative number,

% we replace this by 1.

4

queryi(x)<-(in_ptable(x),is_metal(x),melting_point(m,x),
LESS(100000,m) ,LESS(m, 180000)) .

in_ptable(x)<-in_group(g,x).

in_group("IA",x)<-member(n,[1 3 11 19 37 S5 87]),
atomic_number(n,x),is_element(x).

in_group("IB",x)<-member(n, (29 47 79]), @
atomic_number(n,x),is_element(x).
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is_metal(x)<-(atomic_number(n,x),
range(n,[[2 5] [10 14] [18 32] [36 51] [54 84] [86 104]])).

range(n, [[k1 k2] It])<-LESS(k1,n),LESS(n, k2).
range(n, [hit])<-range(n,t).

atomic_number(number,element (number,symbol ,name,weight,density,meltpt)).
melting_point(meltpt,element(number,symbol,name,veight,density,meltpt)).

memberCh, [hit]).
member(x, [hlt])<-member(x,t).

is_element(element(3,"Li","lithium",694,053,18060)).
is_element(element(11,"Na","sodium",2298,097,9780)).
is_element(element(19,"K","potassium",3910,087,6370)).
is_element(element(37,"Rb","rubidium",8546,153,3900)).
is_element(element(55,",Cs","cesium"”,13290,1279876,2880)).
is_element (element (87,"Fr","francium"”,22300,0,2700)).

is_element(element(29,"Cu","copper",6354,892,108450)).
is_element(element(47,"Ag","silver",10786,1050,96193)).
is_element(element(79,"Au","gold",19696,1930,106443)).

INTEGRITY CONSTRAINTS:

<-in_group("IA",x),is_metal(x),
melting_point(m,x),LESS(u,v),LE(m,u),LE(v,2700).
<-in_group("IA",x),is_metal(x),
melting_point(m,x),LESS(u,v),LE(18060,u) ,LE(v,m).
<-in_group("IB",x),is_metal(x),
melting_point(m,x),LESS(u,v),LE(m,u) ,LE(v,96193).
<-in_group("IB",x),is_metal(x),
melting_point(m,x),LESS(u,v),LE(108450,u) ,LE(v,m).

C.3 Zebra Program: Generate and Test Domain

QUERY(x) <- (houses(Houselist), generate(Houselist,
["I'Od" "grcen" "bluo" ] .
("english" “"spaniard" "japaneese"]),
does_not_conflict(Houselist),
print_houses(Houselist)).

houses([house (C1,N1)house(C2,N2)house(C3,N3)]).
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generate((],X1,X2).
generate([house(Y1,Y2) [Rest],Col, Nat) <-
(choose(Y1,Col,Rcol),choosa(Y2,Nat ,Rnat),
generate(Rest,Rcol,Rnat)).

choose(A,[AIList],List).
choose(A,[BlList],[BIList1]) <- choose(A,List,Listl).

member (X, [XIY]).
member(X, [AIB]) <- member(X,B).

right_of(A,B, [B A | S1] ).
right_of(A,B, [X | Y] ) <- right_of(A,B,Y).

next_to(A,B, [A BiIsS2]).
next_to(A,B, [B A]S3]).
next_to(A,B, [X | Y] ) <- next_to(A,B,Y).

does_not_conflict(Houselist)<-
(member(house("green”,"spaniard") ,Houselist),
member (house("blue","english") ,Houselist),
member (house("red","japaneese") ,Houselist),
right_of( house("red",X4) , house("green",X6) , Houselist) ,
next_to( house('green",X9) , house(“blue”,X11) , Houselist)).

print_houses([A|B]) <- (WRITE(A),print_houses(B)).
print_houses(().

INTEGRITY CONSTRAINTS:

<~ generate(CONS(house(col,"english") , R),A,S),NE(col,"blua").
<- generate(CONS(house(col,"spaniard") , R),A,S),NE(col,"green").
<~ generate(CONS(house(col,"japaneese") , R),A,S),NE(col,"red").

<

generate(CONS (house("green",X),CONS(house(Y,Z) , R)),A,S),
NE(Y,"red").

<- generate(CONS(house(Y,X),CONS(house("red",2) , R)),A,S),
NE(Y,"green").

<- generate(CONS(house(C,B),

CONS(house("green",2),

CONS(house(Y,W) , R))),A,S),
NE(C,"blue") ,NE(Y,"blue").
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<- generate(CONS(house(C,B),
CONSChouse("blue",Z),
CONS(houSC(Y.H) » R))) nA.s> s

NE(C,"green") ,NE(Y,"green").
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